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1 Background

Many materials are known to exhibit changes in crystal structure with temperature, such as ferro-
electrics, charge density waves, and martensitic transformations. These structural phase transitions
are not only important for practical applications but are also of interest because various intriguing
phenomena, such as anomalies in transport properties, are observed near phase transitions.

Traditionally, calculations of crystal structures using density functional theory (DFT) have
been limited to zero temperature, making it difficult to calculate the temperature dependence of
crystal structures. However, in recent years, by advancing the theory of anharmonic phonons,
a theoretical method capable of calculating the temperature dependence of crystal structures has
been developed. This method has been made available as a new feature in the open-source software
for anharmonic phonon calculations, ALAMODE [1, 2, 3]. This method has been validated with
simple perovskite materials like BaTiO3 and, in principle, can be applied to a wide range of
materials. However, with the current algorithm used for structural updates, convergence of the
crystal structure is slow, making it practically difficult to apply to complex materials.

Therefore, this study aims to develop an algorithm that operates robustly in general cases and
converges structures more efficiently, and to implement it in the ALAMODE program. RMM-
DIIS[4] is a well-known method for accelerating convergence in function optimization, but this
method searches for extrema of the function, which may lead to convergence to unstable, high-
symmetry phases near saddle points of the potential surface during structural phase transitions.
To address this issue, this study implemented the BFGS [5] method, which more robustly searches
for minima, and methods combining these approaches for efficient convergence. The performance
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of these methods was tested with cases focusing on structural phase transitions. Furthermore,
efforts were made to implement these methods in the ALAMODE package to allow easy switching
between various optimization methods in structural optimization.

2 Theory of Optimization Methods

In this section, we briefly introduce the Newton method that has been used in previous calculations,
its variant, the BFGS method, another useful approach, the RMM-DIIS method, and its challenges,
and finally the GDIIS method that is the focus of this study.

2.1 Newton Method

We consider the problem of optimizing a function f(x) with respect to its argument. Let the value
of x at the k-th step be xk , the gradient of the function f at that point be g(xk), and the Hessian
be H−1

k . The Newton method updates the structure as follows:

xk+1 = xk −H−1
k g(xk) (2.1)

Currently, the ALAMODE package uses a method based on the Newton method. However, because
calculating the free energy Hessian is difficult, an approximate estimate that is simpler to compute
is used instead, which may result in significantly slower convergence along the soft mode directions
where the potential surface flattens out.

2.2 RMM-DIIS Method

Instead of using a fixed, coarse approximation for the Hessian, a method that updates the approxi-
mation of the Hessian at each step using the gradient of the free energy can accelerate convergence.
The RMM-DIIS (Residual Minimization Method with Direct Inversion in the Iterative Subspace)
method is one such technique, which improves convergence by using the gradient history from past
search points [4]. In RMM-DIIS, the update is performed using the past L search points as follows:

xk+1 =

k∑
i=k−L+1

cixi,

k∑
i=k−L+1

ci = 1 (2.2)

The coefficients ci are determined by minimizing

Wk =
1

2
|g̃k+1|2 + λ

(
k∑

i=k−L+1

ci − 1

)
, g̃k+1 =

k∑
i=k−L+1

cig(xi) (2.3)

This is because the gradient at a point x close enough to an extremum x∗ can be approximated as

g(x) ≃ H(x∗)(x− x∗) (2.4)

By minimizing Wk, we can find a point where the gradient g becomes small. To minimize Wk, we
solve:

[
Bk 1
1⊤ 0

][
c
λ

]
=

[
0
1

]
, c :=


ck

ck−1

...
ck−L+1

, 1 :=


1
1
...
1

, Bk :=

 e⊤k ek . . . e⊤k ek−L+1

...
. . .

...
e⊤k−L+1ek . . . e⊤k−L+1ek−L+1


(2.5)

Although the RMM-DIIS method improves convergence behavior, it tends to converge to saddle
points when used directly for function optimization, as it searches for points where the gradient
becomes zero. Given that high-symmetry phases can be unstable saddle points at low temperatures
in structural phase transition calculations, there is a risk of convergence to structures that are not
the most stable at each temperature, which is undesirable.
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2.3 BFGS Method

Similarly, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method is an effective approach when
the Hessian cannot be calculated directly [5]. The optimization update is performed as follows:

xk+1 = xk −H−1
k g(xk) (2.6)

H−1
k+1 = H−1

k +
y⊤
k sk + y⊤

k H
−1
k yk(

y⊤
k sk

)2 sks
⊤
k −

H−1
k yks

⊤
k + sky

⊤
k H

−1
k

y⊤
k sk

(2.7)

sk := xk+1 − xk, yk := g(xk+1)− g(xk) (2.8)

However, updates are only performed at points that satisfy the condition y⊤
k sk > 0, which ensures

the positive definiteness of the Hessian and prevents convergence to saddle points.

2.4 GDIIS Method

The focus of this study is on the GDIIS (Geometry optimization using Direct Inversion in the
Iterative Subspace) method, which combines the RMM-DIIS and BFGS methods [6]. In this
study, we used the result of BFGS as an approximation for the residual vector in RMM-DIIS:

g(xk) → H−1
k g(xk) (2.9)

Additionally, a condition was imposed on the direction of the new search point obtained by the
RMM-DIIS procedure. Specifically, the update is allowed only if the angle θk, defined as:

cos θk =
∆⊤

BFGS∆DIIS

|∆BFGS||∆DIIS|
, ∆BFGS := −H−1

k g(xk), ∆DIIS := xk+1 − xi (2.10)

is sufficiently close. By imposing this condition, the method suppresses convergence to saddle
points. Specifically, we adopted the following thresholds from previous research [6]:

cos θ > Threshold(L) :=



0.97 (L = 2)

0.84 (L = 3)

0.71 (L = 4)

0.67 (L = 5)

0.62 (L = 6)

0.56 (L = 7)

0.49 (L = 8)

0.41 (L = 9)

0.00 (L ≥ 10)

(2.11)

where L is the number of past points used in RMM-DIIS scheme.

3 Results and Discussion

3.1 Test Case

In this section, we verify the optimization method described in the previous chapter. This study
intends to apply the developed methods to structure optimization at finite temperatures, partic-
ularly for calculating structural phase transitions. In structural phase transitions, it is typical for
the transition to occur between a highly symmetric high-temperature phase and a low-symmetry
low-temperature phase. When plotting the free energy landscape along the soft mode, as shown
in Figure 1, the high-symmetry phase becomes stable at high temperatures (T > Tc), while at low
temperatures (T < Tc), the high-symmetry phase becomes an unstable saddle point, leading to
a phase transition to the low-symmetry phase. Therefore, we will verify the method using a test
case involving a double-well function that includes a saddle point, as shown below:

f(x) = exp
(
(3x4 + 4x3 − 12x2 + 32)/32

)
(1.0 + y2) (3.1)
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Figure 1 Schematic diagram of the temperature dependence of the free energy landscape along the
soft mode during a structural phase transition.

3.2 Results of RMM-DIIS

First, the optimization problem for the test case was solved using RMM-DIIS, and the results are
shown in Figure 2. In Figure 2, the solution converged to the saddle point of the double well,
and although it converged to a point where the gradient was zero, it did not meet the objective of
finding a local minimum. This corresponds to the unstable high-symmetry phase at T < Tc in the
previous example, which is undesirable behavior for the calculation of structural phase transitions
targeted in this study.

Figure 2 RMM-DIIS (L = 6) failing to calculate the minimum for the double-well potential. The
function converged to the saddle point located at xsaddle = (0, 0). The initial values used for the
calculation were (−0.3, 1.0).
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3.3 Results of GDIIS

Next, the performance of GDIIS, a method that can potentially address the issue in the previous
section, was examined.

Figure 3 Optimization using GDIIS (L = 6). The initial values were (−0.3, 1.0) for the left figure
and (−0.001, 0.5) for the right figure. Even in the same situation where RMM-DIIS failed, the
function can be seen updating toward smaller values. In the actual calculation, the initial Hessian
matrix was set as H−1

0 = 0.5I.

When the optimization was performed with GDIIS under the same conditions where RMM-
DIIS converged to the saddle point, GDIIS successfully avoided converging to the saddle point and
headed toward the minimum point, as seen in Figure 3. This is because the condition that restricts
the direction of DIIS changes the step in the direction of the saddle point to a standard BFGS
step. Furthermore, this effect is significant, as GDIIS exhibited correct behavior even with initial
conditions close to the saddle point, as shown in Figure 3.

Next, we want to compare the performance difference between GDIIS and the BFGS methods,
which could also address the issue from the previous section. GDIIS is considered to converge more
quickly than BFGS in flat regions of functions far from extrema. Here, as an example of a flat
function, we benchmark the function f(x) = x4. Since many optimization methods assume that
the optimal value is quadratic, optimization is more challenging for systems where the minimum
is expressed by a cubic or higher order.

Figure 4 Optimization of f(x) = x4 using GDIIS. The vertical axis shows the distance from the
exact minimum x = (0, 0) plotted on a log scale. The left figure shows the graph until the error
reaches 10−4, and the right figure shows the results after 200 iterations.
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Figure 5 Exploration of f(x) = x4 using the
gradient descent method.

Figure 6 Exploration of f(x) = x4 using the
BFGS method.

Figures 4, 5, and 6 show the number of steps taken to reach an error of approximately 10−4 from
the optimal value. Notably, GDIIS approached the desired error in approximately 30 iterations,
while BFGS took about 190 iterations, and gradient descent failed to reach 10−2 after 20,000
iterations. This confirms that GDIIS is more suitable for optimizing such flat functions compared
to other optimization methods.

4 Implementation into the ALAMODE Package

To utilize the methods validated in this research within the ALAMODE package, modifications
to the ALAMODE code are necessary. Currently, the calculation of anharmonic phonon theory
and the gradient of free energy is invoked as a single function during each step of structural
optimization, updating the structure accordingly. Moreover, since each method is implemented
in a way specific to this problem, a deep understanding of the details of the ALAMODE code is
required for algorithm implementation, making it challenging to easily test various methods.

Therefore, in this research, we focused on decoupling the part of the code that solves general
optimization problems, enabling a more straightforward switching between different optimization
engines for testing purposes. We began preparations for test cases to ensure that the modified code
worked correctly, but we were unable to complete the implementation within the given timeframe.
Applying the validated algorithms to actual materials remains a future challenge.

5 Conclusion and Future Outlook

In this research, we confirmed that using the GDIIS method allows for robust convergence to local
minima and efficient convergence in flat functions simultaneously. Regarding the implementation
into the ALAMODE package, we worked on modifying the implementation to allow for switching
between optimization algorithms, but we were unable to test the validated algorithms on actual
materials.

We aim to incorporate GDIIS into the ALAMODE code and conduct benchmarks on several
materials, starting with BaTiO3, to provide this as a new feature. Additionally, while this method
adopted BFGS and RMM-DIIS, the original paper on GDIIS [6] mentions methods with higher
stability. We would like to continue working on the validation of these algorithms.
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