
FY2024 MERIT / MERIT-WINGS Self-Directed Joint Research 

Development of a Comprehensive Programming Language for 
Measurement-Based Quantum Computation 

Masato Fukushima A，Yuki Watanabe B 

A Ideguchi Laboratory, Department of Physics, Faculty of Science 
B Oka Laboratory, Department of Physics, Faculty of Science 

Submission Data：2025/01/15 

Abstract 
This study aims to develop a practical software platform based on the Measurement-

Based Quantum Computation (MBQC) theoretical framework, covering all steps from 
resource-state design to measurement-pattern generation. The software constructed in 
this research serves as an “MBQC compiler,” converting resource states into 
measurement patterns that can be executed on real devices or simulators. By integrating 
with Graphix—an MBQC “machine-language” layer software suite—demonstrations on 
quantum devices such as IBM and Quandela, as well as simulators like Aer and Perceval, 
will be possible. This approach will make designing, verifying, and optimizing 
computational resources on actual quantum devices easier. 
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Research Background 

Measurement-Based Quantum Computation (MBQC) is a theoretical framework for 
universal quantum computation, realized by combining quantum measurements on a 
graph state—a type of stabilizer state—and feedforward operations that depend on the 
measurement outcomes (graph state + measurements will be referred to collectively as 
the “computational graph” in what follows) [1] (see Fig. 1). Unlike the circuit model, 

Fig. 1. Overview of the MBQC model. Quantum computation proceeds by the series of 
single-qubit measurements performed on entangled qubits (graph state). Universal 
quantum computation can be realized by performing measurements and feedforward 
operations on an input state [1]. 



MBQC achieves universal quantum computation using only quantum measurements on 
a graph state and feedforward operations. This feature is particularly attractive for optical 
quantum computers, where a universal gate set requires nonlinear processes that are 
fundamentally probabilistic. 

Moreover, MBQC underpins the concept of blind quantum computation [2], a protocol 
enabling secure cloud-based quantum computing without requiring the client side to 
possess advanced quantum resources. Consequently, MBQC holds both theoretical and 
practical promise. In recent years, it has also been shown that ZX Calculus—originally 
proposed for gate-count optimization in quantum circuits—can be applied to optimize 
MBQC computational graphs [3]. At a lower, device-oriented level, measurement 
patterns [4] have been established as a language to describe the sequence of qubit 
operations. By exploiting the commutation rules of the measurement commands, these 
measurement patterns can be re-ordered and optimized to align with the execution order 
on physical devices or simulators. 

However, practical software infrastructure that leverages the hierarchical structure and 
degrees of freedom inherent in the MBQC theoretical framework, and their practical links 
to real-device execution or simulations, are missing. While software based on quantum 
circuit models, such as Qiskit, can in principle describe MBQC by incorporating 
feedforward operations, they require a substantial overhead, making efficient 
programming of MBQC challenging. MCBeth [5], a software for simulating measurement 
patterns, only implements the reordering of measurement commands and is not suitable 
for handling graph transformation operations permitted in MBQC, such as those 
performed by ZX Calculus. Although ZX Calculus can be handled by PyZX [6], it focuses 
solely on optimizing computational graphs and lacks a compiler component that converts 
them into measurement patterns required for execution on actual devices. Given these 
circumstances, there is a demand for a comprehensive software platform that covers 
everything from the design of computational graphs to the optimization of measurement 
patterns. 
 

Research Objectives 
In this study, we aim to develop software that comprehensively supports everything 

from the design of computational graphs to the optimization of measurement patterns, 
faithfully based on the theoretical framework of Measurement-Based Quantum 
Computation (MBQC). This software functions as an "MBQC compiler," which intuitively 
designs resource states in the form of computational graphs—an abstract representation 
of quantum computations in MBQC—and rapidly and securely converts them into 
measurement patterns executable on actual devices. By providing a foundation that 
transforms computational graphs into formats suitable for numerical simulations and 
real-device executions, this software seeks to facilitate the application and verification of 
computational resources on quantum devices. 
  



Value and Features of This Research 
In this study, we constructed an architecture that hierarchically integrates (1) a layer 

for optimizing computational graphs, (2) a layer for efficiently performing feedforward 
operations, and (3) a layer for generating measurement patterns (Fig. 2). This 
architecture enables the software to function as an "MBQC compiler," directly compiling 
computational graphs—the abstract representations of computations—into 
measurement patterns equivalent to an "assembly language" in MBQC. While gate-
based models have established software foundations that translate sequences of 
quantum gates into hardware instructions, MBQC centers around measurements and 
feedforward operations, making simple circuit transformations inadequate. The software 
developed in this work can directly handle these MBQC-specific computational 
resources, which is useful for both theoretical and experimental research. In other words, 
the software bridges MBQC theory between theoretical concepts and device-executable 
MBQC language, serving as a research tool to support the design of new quantum 
algorithms and resource optimization studies. 

Fig. 2. Overview of the Developed Software. The “High-level Programming Layer” 
shown here corresponds to the newly developed software. At this upper layer, users 
program the computational graph and feedforward operations, generate 
measurement patterns optimized for execution, and support both simulation and 
real-device implementations. 



 
Results 

The developed software is implemented based on the theoretical framework of 
Backens et al. [4], which represents computational graphs using ZX diagrams and 
enables optimization processes on them (Fig. 2). ZX diagrams are tensor network-like 
structures that graphically represent quantum states and operations using nodes and 
edges, and they can be transformed and simplified based on the theoretical framework 
of ZX Calculus [3]. 

In this study, we implemented an optimization process that removes unnecessary Pauli 
measurement nodes from the computational graphs (Fig. 3, Tab. 1). Pauli measurement 
nodes represent measurements in the special Pauli bases. It is known that the effects of 
Pauli measurements satisfying certain conditions can be absorbed as influences on the 
measurement operations of adjacent nodes, allowing them to be removed from the ZX 
diagram. This enables the simplification of measurement patterns while maintaining the 
computational capabilities realized by the original computational graphs. 

 
Fig. 3. Initial State (Left) and the Result (Right) After Removing Unnecessary Pauli 
Measurement Nodes. Green nodes represent measurements in the XY plane, red nodes 
represent measurements in the YZ plane, and black nodes denote output nodes. Refer 
to Tab. 1 for the measurement angles. 
  



 
Tab. 1. Measurement Bases in the Initial State (a) and After Optimization (b). The node 

numbers with colors are Pauli measurement nodes. 

 
 
 

Furthermore, we restructured the optimization of feedforward operations—which had 
previously been performed only indirectly at the measurement-pattern level—so that it 
can now be directly executed at the layer above the measurement pattern (Fig. 2). 
Concretely, we represent feedforward operations using “Flows” (Causal Flow, 
Generalized Flow, Pauli Flow), each ensuring determinism and realizing feedforward 
optimization by transforming these Flows (Fig. 4). While optimizing feedforward 
operations, we leverage stabilizer-operator identities on the graph state to reduce the 
computational depth. The results are consistent with those obtained via the “Signal 
Shifting” method described in [4], indicating that feedforward operations are also 
amenable to optimization under our framework. 



 
Fig. 4. Results of Feedforward-Operation Optimization. The left figure shows the Flow 
before optimization (corresponding to the graph state in Fig. 3 left / Tab. 1(a)), and the 
right figure shows the Flow after optimization. 
  



 
Moreover, we confirmed that, based on the optimized fundamental graph state and 

feedforward operations, the system can be transformed (compiled) into an executable 
measurement pattern (Tabs. 2 and 3). Tab. 2 shows the result of compiling into a 
measurement pattern without optimization, whereas Tab. 3 shows the result after 
applying optimization. Without optimization, the measurement pattern consists of 74 
commands; this number is reduced to 62 following optimizations. We generated state 
vectors from both measurement patterns and evaluated the expectation values of 
random 2×2 Hermitian operators. As shown in Fig. 6, these expectation values remain 
identical even after optimization, suggesting that the optimization procedure was carried 
out correctly. 
 
Tab. 2. Measurement Pattern Obtained by Compiling the Initial State Without 
Feedforward-Operation Optimization. Owing to space constraints, the details are omitted 
here, but this pattern contains a total of 74 commands. 

 
  



Tab. 3. Measurement Pattern Obtained by Compiling After Feedforward-Operation 
Optimization of the Initial State. This pattern contains a total of 62 commands. 

 

 
Fig. 5. Verification of Equivalence Between Measurement Patterns Pre- and Post-
Optimization. To confirm that both measurement patterns embed the same computation, 
we compared the expectation values of random 2×2 Hermitian operators for the output 
states generated by each pattern. The expectation values matched within computational 
precision, demonstrating the correctness of the optimization process. 



 
Outlook 

At the current stage, removing Pauli measurement nodes has enabled the elimination 
of computations equivalent to Clifford gates. Recently, however, methods have also been 
proposed for removing certain non-Clifford gates [8]. Incorporating such methods into 
our implementation may enable handling the broad range of computational models and 
resource states indicated by MBQC theory, thereby facilitating further optimization and 
the advanced utilization of computational resources. Additionally, by maintaining 
compatibility with the measurement patterns of Graphix—a precursor to this project—
direct compilations for execution on IBM Quantum and Quandela devices, as well as on 
Aer and Perceval simulators, are possible via the graphix-ibmq and graphix-perceval 
submodules. 

Looking ahead, one important direction is the development of algorithms that can 
embed a computational graph into a hardware-feasible graph structure. Since MBQC 
allows the use of a wider variety of graph geometries than circuit-based models, 
combining considerations of graph construction costs on actual devices with 
computational-graph optimization may allow us to propose an execution strategy that 
exploits MBQC’s resource efficiency. Furthermore, in the software constructed in this 
study, extending feedforward operations would make it possible to implement a 
compilation approach for measurement patterns that process fault tolerance.  
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