
FY2024 MERIT / MERIT-WINGS Self-Directed Joint Research

Development of a Comprehensive Programming Language for
Measurement-Based Quantum Computation

Masato Fukushima A，Yuki Watanabe B

A Ideguchi Laboratory, Department of Physics, Faculty of Science
B Oka Laboratory, Department of Physics, Faculty of Science

Submission Data：2025/01/15

Abstract
This study aims to develop a practical software platform based on the Measurement-

Based Quantum Computation (MBQC) theoretical framework, covering all steps from
resource-state design to measurement-pattern generation. The software constructed in
this research serves as an “MBQC compiler,” converting resource states into
measurement patterns that can be executed on real devices or simulators. By integrating
with Graphix—an MBQC “machine-language” layer software suite—demonstrations on
quantum devices such as IBM and Quandela, as well as simulators like Aer and Perceval,
will be possible. This approach will make designing, verifying, and optimizing
computational resources on actual quantum devices easier.

About the Authors
AMasato Fukushima: Specializes in optical measurements (mid-infrared photothermal

microscopy). In this project, contributed to the implementation of the end-to-end workflow,
from design of graph state through measurement pattern generation.
BYuki Watanabe: Specializes in condensed matter theory (time-periodic driving of

classical stochastic processes, non-Hermitian physics). In this project, contributed to
implementing the ZX-Calculus algorithms.

Research Background

Measurement-Based Quantum Computation (MBQC) is a theoretical framework for
universal quantum computation, realized by combining quantum measurements on a
graph state—a type of stabilizer state—and feedforward operations that depend on the
measurement outcomes (graph state + measurements will be referred to collectively as
the “computational graph” in what follows) [1] (see Fig. 1). Unlike the circuit model,

Fig. 1. Overview of the MBQC model. Quantum computation proceeds by the series of
single-qubit measurements performed on entangled qubits (graph state). Universal
quantum computation can be realized by performing measurements and feedforward
operations on an input state [1].

MBQC achieves universal quantum computation using only quantum measurements on
a graph state and feedforward operations. This feature is particularly attractive for optical
quantum computers, where a universal gate set requires nonlinear processes that are
fundamentally probabilistic.

Moreover, MBQC underpins the concept of blind quantum computation [2], a protocol
enabling secure cloud-based quantum computing without requiring the client side to
possess advanced quantum resources. Consequently, MBQC holds both theoretical and
practical promise. In recent years, it has also been shown that ZX Calculus—originally
proposed for gate-count optimization in quantum circuits—can be applied to optimize
MBQC computational graphs [3]. At a lower, device-oriented level, measurement
patterns [4] have been established as a language to describe the sequence of qubit
operations. By exploiting the commutation rules of the measurement commands, these
measurement patterns can be re-ordered and optimized to align with the execution order
on physical devices or simulators.

However, practical software infrastructure that leverages the hierarchical structure and
degrees of freedom inherent in the MBQC theoretical framework, and their practical links
to real-device execution or simulations, are missing. While software based on quantum
circuit models, such as Qiskit, can in principle describe MBQC by incorporating
feedforward operations, they require a substantial overhead, making efficient
programming of MBQC challenging. MCBeth [5], a software for simulating measurement
patterns, only implements the reordering of measurement commands and is not suitable
for handling graph transformation operations permitted in MBQC, such as those
performed by ZX Calculus. Although ZX Calculus can be handled by PyZX [6], it focuses
solely on optimizing computational graphs and lacks a compiler component that converts
them into measurement patterns required for execution on actual devices. Given these
circumstances, there is a demand for a comprehensive software platform that covers
everything from the design of computational graphs to the optimization of measurement
patterns.

Research Objectives
In this study, we aim to develop software that comprehensively supports everything

from the design of computational graphs to the optimization of measurement patterns,
faithfully based on the theoretical framework of Measurement-Based Quantum
Computation (MBQC). This software functions as an "MBQC compiler," which intuitively
designs resource states in the form of computational graphs—an abstract representation
of quantum computations in MBQC—and rapidly and securely converts them into
measurement patterns executable on actual devices. By providing a foundation that
transforms computational graphs into formats suitable for numerical simulations and
real-device executions, this software seeks to facilitate the application and verification of
computational resources on quantum devices.

Value and Features of This Research
In this study, we constructed an architecture that hierarchically integrates (1) a layer

for optimizing computational graphs, (2) a layer for efficiently performing feedforward
operations, and (3) a layer for generating measurement patterns (Fig. 2). This
architecture enables the software to function as an "MBQC compiler," directly compiling
computational graphs—the abstract representations of computations—into
measurement patterns equivalent to an "assembly language" in MBQC. While gate-
based models have established software foundations that translate sequences of
quantum gates into hardware instructions, MBQC centers around measurements and
feedforward operations, making simple circuit transformations inadequate. The software
developed in this work can directly handle these MBQC-specific computational
resources, which is useful for both theoretical and experimental research. In other words,
the software bridges MBQC theory between theoretical concepts and device-executable
MBQC language, serving as a research tool to support the design of new quantum
algorithms and resource optimization studies.

Fig. 2. Overview of the Developed Software. The “High-level Programming Layer”
shown here corresponds to the newly developed software. At this upper layer, users
program the computational graph and feedforward operations, generate
measurement patterns optimized for execution, and support both simulation and
real-device implementations.

Results

The developed software is implemented based on the theoretical framework of
Backens et al. [4], which represents computational graphs using ZX diagrams and
enables optimization processes on them (Fig. 2). ZX diagrams are tensor network-like
structures that graphically represent quantum states and operations using nodes and
edges, and they can be transformed and simplified based on the theoretical framework
of ZX Calculus [3].

In this study, we implemented an optimization process that removes unnecessary Pauli
measurement nodes from the computational graphs (Fig. 3, Tab. 1). Pauli measurement
nodes represent measurements in the special Pauli bases. It is known that the effects of
Pauli measurements satisfying certain conditions can be absorbed as influences on the
measurement operations of adjacent nodes, allowing them to be removed from the ZX
diagram. This enables the simplification of measurement patterns while maintaining the
computational capabilities realized by the original computational graphs.

Fig. 3. Initial State (Left) and the Result (Right) After Removing Unnecessary Pauli
Measurement Nodes. Green nodes represent measurements in the XY plane, red nodes
represent measurements in the YZ plane, and black nodes denote output nodes. Refer
to Tab. 1 for the measurement angles.

Tab. 1. Measurement Bases in the Initial State (a) and After Optimization (b). The node

numbers with colors are Pauli measurement nodes.

Furthermore, we restructured the optimization of feedforward operations—which had
previously been performed only indirectly at the measurement-pattern level—so that it
can now be directly executed at the layer above the measurement pattern (Fig. 2).
Concretely, we represent feedforward operations using “Flows” (Causal Flow,
Generalized Flow, Pauli Flow), each ensuring determinism and realizing feedforward
optimization by transforming these Flows (Fig. 4). While optimizing feedforward
operations, we leverage stabilizer-operator identities on the graph state to reduce the
computational depth. The results are consistent with those obtained via the “Signal
Shifting” method described in [4], indicating that feedforward operations are also
amenable to optimization under our framework.

Fig. 4. Results of Feedforward-Operation Optimization. The left figure shows the Flow
before optimization (corresponding to the graph state in Fig. 3 left / Tab. 1(a)), and the
right figure shows the Flow after optimization.

Moreover, we confirmed that, based on the optimized fundamental graph state and

feedforward operations, the system can be transformed (compiled) into an executable
measurement pattern (Tabs. 2 and 3). Tab. 2 shows the result of compiling into a
measurement pattern without optimization, whereas Tab. 3 shows the result after
applying optimization. Without optimization, the measurement pattern consists of 74
commands; this number is reduced to 62 following optimizations. We generated state
vectors from both measurement patterns and evaluated the expectation values of
random 2×2 Hermitian operators. As shown in Fig. 6, these expectation values remain
identical even after optimization, suggesting that the optimization procedure was carried
out correctly.

Tab. 2. Measurement Pattern Obtained by Compiling the Initial State Without
Feedforward-Operation Optimization. Owing to space constraints, the details are omitted
here, but this pattern contains a total of 74 commands.

Tab. 3. Measurement Pattern Obtained by Compiling After Feedforward-Operation
Optimization of the Initial State. This pattern contains a total of 62 commands.

Fig. 5. Verification of Equivalence Between Measurement Patterns Pre- and Post-
Optimization. To confirm that both measurement patterns embed the same computation,
we compared the expectation values of random 2×2 Hermitian operators for the output
states generated by each pattern. The expectation values matched within computational
precision, demonstrating the correctness of the optimization process.

Outlook

At the current stage, removing Pauli measurement nodes has enabled the elimination
of computations equivalent to Clifford gates. Recently, however, methods have also been
proposed for removing certain non-Clifford gates [8]. Incorporating such methods into
our implementation may enable handling the broad range of computational models and
resource states indicated by MBQC theory, thereby facilitating further optimization and
the advanced utilization of computational resources. Additionally, by maintaining
compatibility with the measurement patterns of Graphix—a precursor to this project—
direct compilations for execution on IBM Quantum and Quandela devices, as well as on
Aer and Perceval simulators, are possible via the graphix-ibmq and graphix-perceval
submodules.

Looking ahead, one important direction is the development of algorithms that can
embed a computational graph into a hardware-feasible graph structure. Since MBQC
allows the use of a wider variety of graph geometries than circuit-based models,
combining considerations of graph construction costs on actual devices with
computational-graph optimization may allow us to propose an execution strategy that
exploits MBQC’s resource efficiency. Furthermore, in the software constructed in this
study, extending feedforward operations would make it possible to implement a
compilation approach for measurement patterns that process fault tolerance.

Acknowledgements

We are sincerely grateful for the support and cooperation of many individuals and
organizations in conducting this research.

First, we would like to thank the members of Fixstars Amplify, particularly CEO Takuji
Hiraoka, for providing the initial opportunity that led to this research, as well as for their
substantial support and collaboration. We are also deeply indebted to Dr. Shinichi
Sunami (Postdoctoral Researcher at the University of Oxford) and Daichi Sasaki (Kusaka
Laboratory, Graduate School of Science, Faculty of Science) for engaging in regular
discussions regarding our research objectives and implementation strategies. We further
express our appreciation to Sora Shiratani (Todo Laboratory, Graduate School of
Science, Faculty of Science) for implementing the fastflow module and offering valuable
advice on efficient and high-quality programming.

We are also grateful to the staff at the National Institute of Information and
Communications Technology (NICT). This research was selected for the NICT Quantum
Camp (探索型⼈材育成コース) for Fiscal Year 2024, and the advisors provided valuable
guidance and financial support, which we deeply appreciate.

Lastly, we extend our thanks to the International Graduate Program for Excellence in
Material and Information Science (MERIT-WINGS) at The University of Tokyo for the
financial assistance provided to support our research activities.

[1] R. Raussendorf et al., Phys. Rev. Lett. 86, 22 (2001).
[2] A. Broadbent et al., FOCS (2009).
[3] M. Backens et al., Quantum 5, 421 (2021).
[4] V. Danos, et al., J. ACM, 54, 2 (2007).
[5] A. Evans et al., arxiv:2204.10784 (2022).
[6] A. Kissinger et al., EPTCS 318 (2020).
[7] D. E. Browne et al., New J. Phys. 9, 8 (2007).
[8] A. Kissinger et al., Phys. Rev. A, 102-2, 102:022406, 8 (2020).

