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1 Outline of Internship
• Place: KYOCERA Corporation, Minatomirai Research Center Research in-

stitute for advanced materials and devices, Department of fundamental tech-
nology research, Electromagnetic field technology section

• Period: 11/1/2021–11/30/2021

• Research Topic: The tradeoff between the power and the efficiency of quan-
tum many-body engines when crossing a quantum phase transition

2 Outline of Workshop
I researched my topic remotely. In addition, we visited the office three times and
viewed the facilities of Kyocera Minatomirai Research Center. The main content
of the internship was the experimental study of large-size quantum many-body
systems using D-Wave’s quantum annealing machine. Specifically, we studied the
trade-off between the driving speed and the efficiency of work extraction from a
heat engine on a quantum many-body system.

3 Research Summary
Since the numerical cost of quantum many-body systems increases exponentially
with the size of the system, experimental verification is important for the analysis
of large system sizes and high-dimensional systems. In this study, we used a
quantum annealing machine with hundreds to thousands of qubits to study large
quantum many-body systems that are difficult to analyze numerically.

D-Wave’s quantum annealing machine is a superconducting quantum qubit
system developed for optimization problems and is available as a cloud service.
The latest machine consists of more than 5,000 qubits operating at about 15.4mK,
allowing the user to design how the qubits are coupled together. Therefore, it is
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possible to perform various physics experiments at low temperatures in large quan-
tum many-body systems. Previous studies of physics experiments using this quan-
tum annealing machine include the phase transition in the three-dimensional Ising
model [1], the KT transition in the two-dimensional transverse field Ising model [2],
the competition between thermal and quantum fluctuations (spin ice) [3], many-
body localization [4], topological defects [5], a thermal machine that accelerates
the transfer of heat from a high-temperature heat bath to a low-temperature heat
bath by external work [6].

In this work, we realize a quantum heat engine that extracts work from thermo-
dynamic cycles on a quantum annealing machine and observe the trade-off between
efficiency and driving speed via a quantum phase transition. Theoretical studies of
heat engines with quantum phase transitions include, for example, the proposal of
an example of achieving Carnot efficiency with finite power [7,8] and the study of
scaling described by the critical exponent between driving speed and work [9, 10].
Another example of an experimental superconducting quantum cubit system is the
implementation of a heat engine and verifies the fluctuation theorem in a small
system on IBM Q [11].

Near the quantum phase transition point, the energy difference between the
ground state and the first excited state becomes exponentially small in the system
size in the case of a first-order phase transition. Therefore, in adiabatic quantum
computation, if we want to change the magnetic field, etc. while the quantum state
remains in the ground state, we need to change it slowly as the energy difference
becomes smaller in order to avoid excitation (time T ∼ ∆−2,where ∆ is a energy
difference). The work taken out in the isothermal process is the difference in
free energy F . Therefore, if excitations occur, the free energy of a final state will
increase and the work extracted will be small. In order to extract a large amount of
work in the isothermal process, it is necessary to reduce the excitation energy, and
to do so, it is necessary to move slowly. This is the cause of the trade-off between
the driving speed and the efficiency through the quantum phase transition, which
is the focus of this study. The scaling between the density of defects (kinks) due
to excitation from the ground state ρkink and the drive time ta has already been
observed in annealing machines [5], with the following relationship.

ρkink ∝ t
− dν

1+zν
a . (1)

Here, ν is the critical exponent for a correlation length, d is the dimension of the
system, and z is dynamical critical exponents. In the one-dimensional transverse-
field Ising model, ν = z = d = 1 and dν/(1 + zν) = 1/2.

This section describes the specific setup for this study. The target system of
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Figure 1: The vertical axis represents A(s), B(s). The horizontal axis represents
s�

our investigation is the one-dimensional transverse-field Ising model (TFIM)
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where the number of qubits L = 2000, s is the parameter which controls the value
of functions A(s), B(s). A(s), B(s) are shown in Figure 1. These functions are
determined by D-Wave and cannot be changed by the user. The phase transition
point is s ∼ 0.28, below which the ground state is in the disordered phase, and
above which it is in the ferromagnetic phase. The constructed cycle is illustrated
in Figure 2. This cycle can be thought of as an analogy of the Stirling cycle
(the original Stirling cycle is an isothermal operation A in contact with a high-
temperature heat bath). First, the control parameter s is set to 1, and the initial
state (I) is randomly sampled from product states. This corresponds to the thermal
equilibrium state at infinite temperature. Next, (A) the control parameter s is
quenched from 1 to a certain value s̄. It can be shown analytically that the
work done here is zero. (Since the trace of the Hamiltonian before and after the
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Figure 2: The cycle constructed in this study. The system is assumed to be always
in contact with a low-temperature heat bath.

transition is zero and hence the energy of the random state is zero, the energy
difference before and after the quench is zero assuming that the state remains
random.) In the experiment, the actual time is not zero but (1− s̄)/2µs−1 because
the change of control parameters is limited to a finite speed v = 2µs. Next, we
perform constant-field cooling at (B)s = s̄. In other words, the system thermalizes
in contact with a low-temperature heat bath (the low-temperature environment
in the annealing machine). In this experiment, the constant field cooling was
performed for 350µs. Finally, (C) the control parameter s is driven from s̄ to 1
at a constant rate. The energy EIV of the final state is now measured. From
here, the cycle is completed by a virtual thermalization at infinite temperature.
By repeating this cycle many times while sampling a random state as the initial
state, the distribution of energy in the final state P (EIV) is obtained. An example
of the time dependence of the control parameter is shown in Figure 3. In this
cycle, only stroke C has a work input or output. By varying the rate of isothermal
manipulation of this stroke C, we measure the energy EIV of the final state. The
ideal maximum work is the difference in free energy between (III) and (IV)

Wmax = F (TC , s̄)− F (TC , 1), (2)
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Figure 3: An example of the time dependence of the control parameters where
s̄ = 0.2 and driving speed is v = 2−8µs−1.

and the corresponding maximum efficiency is

ηmax = Wmax/Q1, (3)

where Q1 is the difference in internal energy between (III) and (IV), and is the
heat absorbed during this cycle. The actual work done in this cycle is estimated
as the difference between the maximum work Wmax and the excitation energy εex

W = Wmax − εex. (4)

The corresponding efficiency is

η = W/Q1. (5)

The excitation energy is calculated as the expectation value of the distribution of
the difference between the analytical energy E(TC , s = 1) at temperature TC and
the measured final state energy EIV

εex = E [P (EIV )− E(TC , s = 1)] . (6)
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The expectation value is taken with respect to the set of initial states.
In preparation for the work estimation, we will estimate the effective temper-

ature of the quantum annealing machine. It is known that the effective temper-
ature of a quantum annealing machine Teff differs from the physical temperature
(15.4mK) due to a lot of noise and errors. Therefore, we estimate the effective
temperature needed to calculate the analytical free energy and other parame-
ters. Specifically, we perform a maximum likelihood estimate of the effective
temperature which determine the Boltzmann distribution that explains the en-
ergy distribution P (EIV) of the final state (IV), which is the thermal equilibrium
state obtained by slowing down the stroke C. More precisely, the method is called
pseudo-likelihood estimate and we maximize the following quantities

Γ(β) = − 1

LD

D∑
d=1

L∑
l=1

ln

[
1 + exp

(
−2βσd

l

∑
m∈δl

σd
m

)]
, (7)

where D is the number of samples, σd
l ±1 is the spin of site l in the dth sample (The

Hamiltonian is a classical Ising model in the final state s = 1, and this classical
spin configuration is measurable), and δl is the set of the indexes of the neighboring
sites of site l. The initial states were randomly sampled 1000 times, and 10 trials
were performed for each. Therefore, the sample size is 10000 samples for each
control parameter s̄ and drive speed v. Figure 4 shows the results of estimating
the inverse temperature β = 1/kBT while changing the drive speed v for isothermal
operation of stroke C. The slower we drive the stroke C, the more it converges to
β = 2.5. In other words, the thermal equilibrium states obtained when moving
slowly corresponds to β = 2.5. When moved quickly, the excitation results in a
distribution that cannot be explained by the Gibbs distribution, and the estimation
is failed. This inverse temperature β = 2.5 corresponds to 162.734mK, which is
in the range estimated by previous study [13]. In the following calculations, the
inverse temperature corresponding to the cold heat bath is assumed to be βC = 2.5.

Next, we give the analytical results for the ideal cycle. The one-dimentional
quantum TFIM is solvable by the Jordan-Wigner transformation and allows us
to calculate the internal energy, the free energy F , and the internal energy of the
Gibbs distribution for a given inverse temperature β [14]. Using these analytical
quantities, the ideal maximum work Wmax and maximum efficiency ηmax can be
calculated. The free energy density is shown in Figure 5. The ideal maximum work
output is shown in Figure 6. The ideal maximum efficiency is shown in Figure 7.
These results shows that the work output and the efficiency are maximum near
the phase transition point s ∼ 0.28 for the ideal cycle.

Next, we describe the experimental results on the annealing machine. First, we
observe the scaling of the excitation energy corresponding to the driving speed of
the control parameters during the isothermal process C. According to the Kibble-
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Figure 4: Results of maximum likelihood estimation of driving speed v and
inverse temperature β for isothermal operation of stroke C. It can be seen that
the slower the stroke is moved, the more it converges to β = 2.5. The energy is
nondimensionalized so that the ground energy of the Hamiltonian at s = 1 is −1.
The inverse temperature is also a dimensionless quantity.

Zurek mechanism [15], the density of kinks or defects increases exponentially with
the driving speed when passing through the transition point at finite speed. There-
fore, a similar scaling is expected to be observed for the excitation energy. In the
above cycle, we measured and calculated the εex for each s̄ while varying the driv-
ing speed v of the isothermal operation of the stroke C. The results are shown in
Figure 8. The measurement data is the same as that used for the estimation of
the effective temperature described above, and the sample size is 10000 samples
for each control parameter s̄ and drive speed v, respectively. The Kibble-Zurek
mechanism describes scaling through a transition point at finite speed, and the
power-law scaling is observed in Figure 8 for s̄ = 0.2, 0.3 through the vicinity of
the transition point. A least-squares fit to the result for this s̄ = 0.2, 0.3, assum-
ing the functional form εex = avb, yielded a power b = 0.41(1). Figure 9 shows a
plot of the functional form avb with the parameters obtained by this least-squares
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Figure 5: The free energy density of 1D quantum TFIM in the thermodynamic
limit at β = 2.5. The inverse temperature corresponding to cold bath isβ = 2.5.
The vertical dotted line represents phase transition point s ∼ 0.28.

fit, together with the measurement results. The error bars represent the standard
deviation of the measurement results. The prediction of the Kibble-Zurek mech-
anism for the isolated 1D quantum TFIM is b = dν

1+zν
= 0.5. On the other hand,

this power tends to be smaller for open systems [5]. Therefore, it is a reasonable
result.

Finally, from εex, we calculate the relationship between the driving speed and
the work Eq. (4), efficiency Eq. (5). The results for the work are shown in Fig-
ure 10, and the results for the efficiency are shown in Figure 11. In the region
where the driving speed is small, it can be seen that the largest amount of work
and efficiency can be obtained at s̄ = 0.3, which passes through near the phase
transition point. This is because the free energy of the Gibbs distribution corre-
sponding to the temperature of the cold heat bath becomes the largest near the
transition point (Figure 5). This is mainly due to the fact that the ground state
energy becomes large near the transition point where the gap becomes small. This
cause the difference in the energy between state (III) and state (IV) large. The
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Figure 6: The maximum work output in the ideal cycle. The inverse temperature
corresponding to cold bath is β = 2.5. The energy is nondimensionalized so that
the ground energy of the Hamiltonian at s = 1 is −1. The vertical dotted line
represents phase transition point s ∼ 0.28.

large difference in the energy between the state results in large work. On the other
hand, in the case of s̄ = 0.2, 0.3, the work and efficiency become significantly
lower when the driving speed is increased compared to the case at a s̄ far from the
phase transition point. Even when going through near the phase transition point,
in the case of s̄ = 0.3, the efficiency is larger than that of s̄ = 0.4 up to a driving
speed larger than the speed where the work of s̄ = 0.3 gets smaller than that of
s̄ = 0.4. This is because the heat input Q1 in the next virtual stroke gets smaller
due to the excitation energy in stroke C. These results indicate that in order to
increase the amount of the work and the efficiency, it is necessary to apply a trans-
verse magnetic field until near the phase transition point (s̄ ∼ 0.28). However,
this has the disadvantage of greatly reducing the efficiency when the drive speed
is increased. This relationship of decreasing efficiency with increasing drive speed
indicates the trade-off between power and efficiency in an engine passing near the
transition point.
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Figure 7: The maximum efficiency in the ideal cycle. The inverse temperature
corresponding to cold bath is β = 2.5. The vertical dotted line represents phase
transition point s ∼ 0.28.

In this work, we experimentally study the trade-off between the efficiency of
work extraction and the driving speed in a thermodynamic cycle realized on the
quantum transverse field Ising model with system size L = 2000. A power scal-
ing between the driving speed and the excitation energy through the quantum
phase transition point is observed, which can be explained by the Kibble-Zurek
mechanism. Due to this power scaling, a trade-off between power and efficiency
is observed. As far as I know, there is no experimental study on the trade-off be-
tween power and efficiency in a large quantum many-body system of system size
L = 2000, and this is a novel result.

As a future development, we may use the thermodynamic uncertainty relation
[16,17] derived from the detailed fluctuation theorem to estimate the work. In this
study, due to experimental limitations, we actually measured the distribution of
the final state energy P (EIV). Therefore, we did not measure the work directly, but
estimated it by subtracting the excitation energy from the ideal maximum work.
This estimate is based on the analytical free energy density and the analytical
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Figure 8: The result of measurements and calculations for εex while changing the
rate v of the isothermal process C for each control parameter s̄ where we perform
isomagnetic cooling. We observe the power-law scaling for s̄ = 0.2, 0.3, where
passing through near the phase transition. The energy is nondimensionalized so
that the ground energy of the Hamiltonian at s = 1 is −1.

internal energy density in the thermodynamic limit. Because of the existence of
finite size effects in the case of system size L = 2000, the finite size effect needs to
be taken into account. In addition, since the estimated temperature is also used,
the temperature estimation error is also included. Furthermore, the excitation
energy is estimated based on the assumption that the heat transfer in and out of
the isothermal process of stroke C can be explained by an isothermal quasi-static
process. This is because the energy scale of the Hamiltonian is ∼GHz, while the
control parameters are driven on a ∼µs scale, and the heat input and output will
not deviate significantly from the isothermal quasi-static process. In other words,
if more heat is flowing out than in the isothermal quasistatic process, the actual
excitation energy will be larger than the estimated amount (the extra heat flowing
out means that the excitation is actually larger). In addition, since the quench of
stroke A has a finite velocity, there may be a input or output of work. Therefore,
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it is important to estimate the work directly without making any assumptions,
and it is worthwhile to use thermodynamic uncertainty relations to estimate the
work.
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Figure 9: A function obtained by least-squares fitting of the excitation energy
results for the s̄ = 0.2, 0.3 is plotted together with the measurement results.
The least-squares fit was performed assuming a functional form that shows power-
like scaling εex = avb. The error bars represent the standard deviation of the
measurement results. In the region where v is small, the error bars are large due
to the larger accumulative noise received while driving the control parameters.
The energy is nondimensionalized so that the ground energy of the Hamiltonian
at s = 1 is −1.
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Figure 10: The driving speed through the stroke C is plotted on the horizontal
axis and the vertical axis is the work for each control parameter s̄ where we perform
isomagnetic cooling. In the region where the drive speed v is small, s̄ = 0.3, which
performs isomagnetic cooling near the transition point, outputs the most work.
On the other hand, in the case of s̄ = 0.2, 0.3, which passes through near the
transition point, the output work decreases significantly when the drive speed is
increased. The energy is nondimensionalized so that the ground energy of the
Hamiltonian at s = 1 is −1.

15



10 2 10 1 100

v

0.60

0.62

0.64

0.66

s = 0.2
s = 0.3
s = 0.4
s = 0.5

Figure 11: The driving speed through the stroke C is plotted on the horizontal
axis and the vertical axis is the efficiency for each control parameter s̄ where we
perform isomagnetic cooling. In the region where the drive speed v is small, the
highest efficiency is obtained when the isomagnetic cooling is performed near the
transition point s̄ = 0.3. On the other hand, the efficiency of s̄ = 0.2, 0.3, which
passes through near the transition point, decreases significantly when the drive
speed is increased.
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