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Background and Purpose 

 Recently, the mathematical concept “Topology” attracts many physicists. There are a lot of 

researches to find new materials with non-trivial topology. 

 In order to distinguish topological nature, generally we need to calculate topological 

invariants, but it is difficult to evaluate it by definition. Though, under the crystalline symmetry, 

we can easily simulate the value of topological invariant itself or the remainder of integer 

topological number from the information of the crystalline symmetry. The first example of 

application is the Fu-Kane formula. This formula enables us to compute the topological 

invariant of an insulator with time-reversal and inversion symmetry from the set of parity 

eigenvalues of Bloch function of occupied bands. Recently, this idea is extended to 230 types of 

space group as the symmetry indicators [1,2] which evaluates the topological nature of materials 

from irreducible representations of Bloch wavefunctions at high symmetry k-points. 

Furthermore, we can compute the symmetry indicator of real materials by using irreducible 

representations obtained from the density-functional-theory (DFT) calculation. This method is 

useful for data-driven material exploration, which results in the discovery of various kinds of 

non-magnetic topological materials [3-5]. 



 In this research, we focus on the magnetic topological materials. The magnetic topological 

materials attract many researchers because of their unique physical phenomena. For example, 

magnetic topological insulators and magnetic Weyl semimetals exhibit anomalous quantum 

Hall effect, and skyrmion crystals exhibit topological quantum Hall effect. For the application, 

energy efficient memory devices can be achieved by controlling the magnetic structure in 

magnetic topological materials, such as domain wall and skyrmion. These materials should be 

important as the candidates of various devices.  

 However, candidates of magnetic topological materials are not enough yet. The purpose of 

our research is that we theoretically produce the candidates of magnetic topological materials, 

based on the symmetry indicators for magnetic space groups [2].  

 

Method 

 There are two steps to determine the topological nature of materials. One is the density 

functional theory (DFT) calculation by AM, and the other is the calculation of symmetry 

indicators by SO. Here we explain the details one by one. 

 

1. Computations for the band structure and characters by using DFT calculations 

 DFT calculation is the widely known as ab initio calculation method to evaluate the 

eigenenergy and wavefunctions of electrons in the material. In this research, we use this DFT 

calculation to obtain the band structure and characters of Bloch wavefunctions in the band.  

 We choose Quantum ESPRESSO as the numerical program package of DFT calculation. The 

data of crystalline and magnetic structure of target materials are downloaded from the database 

called MAGDATA [6,7] and converted into the form of the input file for QUANTUM 

ESPRESSO by SeeK-path [8,9]. For efficiency and fewer mistakes, we use the tools to take the 

calculation of various kinds of materials by QUANTUM ESPRESSO.  

 We compute the band structure of target materials by original functions of QUANTUM 

ESPRESSO. Then we see the band dispersion around the Fermi energy, and distinguish the 

conducting property: insulator, semimetal, or metal. Symmetry indicators are kept invariant 

unless the band structure is deformed across the Fermi energy. However, for the metal which 

has a lot of bands around the Fermi energy, the combination of occupied bands from the 

calculation cannot be so reliable thus we exclude the metal from the list of candidates in 

advance.  

 For calculations of symmetry indicators, the characters of Bloch wavefunctions must be 

computed from QUANTUM ESPRESSO output. The character 𝜒𝑛�⃗�  is defined as 

 



where 𝑛 is the energy level of the band, �⃗�  is the momentum, 𝑔 is the symmetry operator, 

and 𝜓𝑛�⃗�  is the Bloch wavefunction of the n-th band at �⃗� . The data such as Bloch 

wavefunctions and symmetry operations are converted from QUANTUM ESPRESSO output 

into the input files of our original program “qeirreps” [13] by using qe2respack. The characters 

of Bloch wavefunctions are produced by qeirreps and used for the calculation of symmetry 

indicators by the Mathematica program.  

 

2. Calculations of symmetry indicators 

 Symmetry indicator enables us to diagnose the topological nature of materials from the 

irreducible representations of occupied bands for the little group 𝐺�⃗�  of the space group 𝐺. The 

definition is as follows. 

 At first, the vector 𝑏 should be defined as the number of each irreducible representation in 

occupied bands for each high symmetry momentum: 

 

where 𝛼 and 𝛽 are the indices for irreducible representations, 𝑘 is the high symmetry 

momentum, 𝑛 is the number of the irreducible representation 𝛼 at the momentum 𝑘. This 

vector 𝑏 is invariant under the adiabatic deformation of the band structure so that it enables us 

to distinguish the phase of matter. We denote the set of the vectors which appear in the band 

structures under the particular symmetry as {BS}. For the convenience, the vector 𝑏 are 

allowed to have minus integer for its elements 𝑛. In this setting, {BS} forms the vector space1. 

 On the other hand, we consider the atomic insulator as the topologically trivial insulator. 

Atomic insulators are models constructed by putting isolated atoms to the sites with respect to 

the crystalline symmetry. Atomic insulators are insulating and topologically trivial by 

definition. We introduce the vector space {AI} as the set of 𝑏 for atomic insulators. By 

definition, {AI} is the subset of {BS}. We say the band structure is topological when its vector 

𝑏 does not belong to {AI}. 

 The symmetry indicator group 𝑋BS is defined as the quotient group: 

 

 For all magnetic space groups, the dimension of {BS} and {AI} are known to be same and 

 𝑋BS becomes the finite group ℤ𝑛1
× ℤ𝑛2

× ⋯× ℤ𝑛𝑁
[2]. If the vector 𝑏 of the band structure 

responds to the trivial element of 𝑋BS, that band can be adiabatically connected to the band 

structure of atomic insulator without gap closing at high symmetry momenta2. On the other 

 
1 These are not truly vectors. However, we abuse this terminology for simplicity.  
2 When the band can be adiabatically connected to the atomic insulator without gap closing at high symmetry 

momenta, this situation does not necessary mean the band structure is topologically trivial. For example, in the two-



hand, if the band structure is related to the non-trivial element of 𝑋BS, that band has the 

topological nature. Here, the species of topological phase depend on the symmetry and the 

element of 𝑋BS.  

 In our research, we determined the irreducible representation, the symmetry indicator, and 

finally the topological nature of band structures from the result of DFT calculations. This 

process was done by using our own Mathematica program.  

 

 

Result and future perspective 

 We searched the band structure and the topological nature of around 40 kinds of magnetic 

materials among Mn and Fe compounds. Most of them were metal or topologically trivial 

insulator/semimetal. We finally found that CaFe2As2 had the non-trivial topological nature. The 

physical properties of CaFe2As2 are shown in following figures: the crystalline and magnetic 

structure, the Brillouin zone, and the band structure produced by the DFT calculation with spin 

orbit coupling and Hubbard U=2.  

 
Figure 1 The crystalline and magnetic structure of 

CaFe2As2 [6,7] 

 
dimensional system with 𝑛-fold rotation symmetry without time reversal symmetry, 𝑋BS is correspond to the 

modulo 𝑛 of the Chern number 𝐶. The Chern number 𝐶 = 𝑛 is the topologically non-trivial value but related to 

the trivial element of 𝑋BS. 

 
Figure 2 The Brillouin zone of CaFe2As2 [8,9] 



 

Figure 3 The band structure of CaFe2As2 

 The space group symmetry of CaFe2As2 is CAmca (MSG 64.480) that contains inversion 

symmetry. In the system with inversion symmetry, we can diagnose the topological nature from 

the inversion parities of the occupied bands [2] as 

𝜇 = ∑
𝑛
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where 𝑛
�⃗� 
±

 is the number of the occupied bands with the eigenvalue ±1 for the inversion 

symmetry. For CaFe2As2, this indicator represents that this material is Weyl semimetal (higher-

order topological insulator) if its band structure is gapless (gapful). The bands are two-fold 

degenerated in the whole Brillouin zone, because of the Kramers degeneracy originated from 

the inversion and time-reversal symmetry. 

 There is the linear dispersion around the Fermi energy on the Γ-S line (enclosed by red circle 

in Figure 3). It seems to be Weyl node which is the feature of the Weyl semimetal. We 

numerically calculated the monopole charge around this momentum point [10], which resulted 

in the trivial value for the calculation with spin-orbit coupling. Although, there is the possibility 

that two Weyl nodes with opposite signs of monopole charge are overlapped by the Kramers 

degeneracy. Then we also calculated for the case without spin-orbit coupling, which proposed 

that the spin-up band structure had Weyl node with the non-trivial value of monopole charge. 



As a result, in the limit of no spin-orbit coupling, CaFe2As2 is the Dirac semimetal with the 

doubly degenerated Weyl nodes on the Γ-S line. These Weyl nodes come from the spin-up and 

down band structures, respectively. The spin-orbit coupling causes the hybridization of the spin-

up and down band structures and makes the small gap on Weyl node. Then finally the material 

becomes the higher-order topological insulator with the spin-orbit coupling. In fact, our 

calculation with spin-orbit coupling produces the small band gap at this momentum point.  

 We expect SrFe2As2 and BaFe2As2 have similar band structures with CaFe2As2. They have the 

possibility to be more proper candidates of Weyl semimetal or higher-order topological 

insulator, by the different values of Hubbard-U and spin-orbit coupling. However, these 

materials have difficulty for numerical calculations because of their strongly correlated effects. 

Actually, the value of magnetization obtained by our calculation are 2-3 times larger than the 

experimental results. For these materials, the advanced numerical method itself is the important 

research topic to evaluate the physical properties accurately [11,12] hence our results based on 

usual DFT calculation is not reliable anymore. 

 On the other hand, we release our own Fortran program “qeirreps” for computing the character 

list of Bloch wavefunctions from the output files of QUANTUM ESPRESSO [13]. The original 

functions of QUANTUM ESPRESSO cannot determine the representations for the system with 

nonsymmorphic space group symmetries. For the system with nonsymmorphic space groups, 

“qeirreps” can calculate the character list from the output data of QUANTUM ESPRESSO. We 

can use the result of qeirreps to see the symmetry indicator of materials. This program qeirreps 

is an open-source program and everyone can access for the computation of symmetry indicators 

by using this. Some similar programs have been already released for WIEN2k and VASP 

[14,15] but these software require paid license. In contrast, QUANTUM ESPRESSO is the 

open-source program and has more demand for users. Our program qeirreps does not respond 

fully to the magnetic system as in the previous researches [4,14]. In future update, we would 

like to support the all magnetic materials.  
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