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Introduction 
Macrocyclic peptides are appealing class of molecules for drug discovery1,2. Many drugs work 

by binding to a specific target protein involved in a disease and thereby modulating its function. 
Currently, small molecules and antibodies are the major classes of drugs. While small molecules have 
low production cost, antibodies have high selectivity to various target proteins. Macrocyclic peptides 
can potentially combine these advantages. 

For discovery of bioactive macrocyclic peptides, a screening methodology called the RaPID 
system had been developed3. This methodology allows for construction of a library of macrocyclic 
peptides with the diversity of 1013 in one tube and selective amplification of molecules that bind to a 
target protein. However, the amplification procedure must be repeated 5–10 times for identification 
of strong binders, and only a small subset of theoretically possible amino acid sequences (4 × 1016 
sequences for 13 residues consisting of 19 kinds of amino acids) can be tested. Moreover, although 
next-generation sequencing enabled us to read 105 sequences from an enriched library, the enormous 
information from the sequencing has not been fully utilized. 

On the other hand, thanks to the rapid growth of calculation speed and understanding of artificial 
neural network (ANN) models, it had become possible to use powerful deep learning techniques in 
various fields. Although various approaches had been studied for organic materials, no effective 
methods had been reported for learning a huge amount of amino acid sequences whose three-
dimensional structure was unknown. In this research, each amino acid was described by nine 
characteristic numerical properties suggested by Kidera et al.4, which were derived by dimensionality 
reduction of 188 physiochemical properties. For the ANN model, we decided to use a long short-
term memory (LSTM) model5, which was known to be powerful for the arbitrary length of inputs. 

In this research, we aimed at designing peptides with high expected affinity while shortening the 
screening process by utilizing a machine learning model trained with the big data obtained from next-
generation sequencing. As the model target protein, we employed the extracellular region of a 
receptor, Met, which was expressed on cell surface. Because a macrocyclic peptide which bound to 
the protein had been reported6, we expected that the protein would be suitable for validation of the 
methodology developed in this study. 
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Results and discussion 
Screening 

To prepare a library of macrocyclic peptides, a mixture of mRNA having a random region was 
subjected to in vitro translation (Figure 1a). By using genetic code reprogramming technique, 
chloroacetyl-D-tyrosine was introduced at the N-terminus of the peptides so that the chloroacetyl 
group would react with a downstream cysteine to form a macrocyclic structure7. The mRNA was 
designed so that a random sequence of 13 amino acid residues would appear between the N-terminal 
amino acid and the cysteine. 19 kinds of natural amino acids (excluding methionine) was used for 
the random sequence. The peptides were fused with mRNA coding for their sequences by means of 
mRNA display technique8, and the mRNA was reverse transcribed to make a library of macrocyclic 
peptides fused with their cognate mRNA/cDNA. 

Using this macrocyclic peptide library, screening was performed (Figure 1b). Met immobilized 
on resin beads via Fc-tag was mixed with a solution of the peptide library containing ~1012 molecules. 
Then, the solution was removed, and the beads were washed to recover peptides binding to beads 
carrying Met. The cDNA of the binding peptides was eluted by heat to obtain ~107 molecules (Sample 
P1). Because the proportion of the binding peptides in the initial library should be very low, we 
anticipated that Sample P1 was contaminated with large amount of non-binding peptides (noise). To 
reduce the proportion of the non-binding peptides, a peptide library was constructed using the eluted 
cDNA, and another round of screening was performed (Sample P2). We also anticipated that some 
of the peptides that could bind to the beads carrying Met might bind to the Fc-tag or the resin instead 
of Met. To obtain data for such peptides, we also performed screening using beads carrying only Fc-
tag (Sample N1 and N2). Then, to obtain sequence data of the recovered peptides, the cDNA samples 

Figure 1. Screening of macrocyclic peptides 
(a) Preparation of the macrocyclic peptide library. Macrocyclic peptides with a random sequence of 13 
residues were synthesized by in vitro translation. (b) Scheme of screening. Peptides binding to immobilized 
Met were recovered, and their cognate cDNA was analyzed by next-generation sequencing to obtain the 
sequence data. 
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(P1, P2, N1 and N2) were subjected to next-generation sequencing. The initial library (I) was also 
sequenced. From each sample, ~105 sequences were obtained. 

Machine learning and design of peptides 
Machine learning model by LSTM was designed to accept input data taken from amino acid 

sequences. Each amino acid was converted into an array of length nine (nine characteristic properties) 
at each timestep, and the timestep was repeated until the end of amino acid sequence. Note that the 
number of timesteps corresponds to the length of amino acid sequence. The objective function was 
set as a three categorical classification problem among before the screening (I), and after the 
screening (P2, N2). Training was done by minimizing the categorical cross entropy. 

Although it was desirable to evaluate the binding affinity of each peptide, since only the sequence 
information was available, the probability to be classified into P2 was used as a “score” instead of 
binding affinity. This method would also have a merit that if the P2 score was high, the probability 
of being classified as N2 should be low, meaning that binding to the resin would be automatically 
eliminated. 

We tried various combinations of training models, but the accuracy of training (guess whether 
the amino acid sequence is before or after the screening) was no better than 80%. We examined the 
distribution of the classification probability to find out the reason. Figure 2 shows the predicted 
probability distribution to be classified as I and P2 by the 10% of test data (not used for model 
training) of I and P2. The left side of each figure represents the class I, and the right side represents 
the class P2. However, more than half of the actual class P2 peptides were indistinguishable from 
class I. In general, if the classification training fails for some reason, the probability distribution is 
smooth, and the central part is almost overlapped. Since the two peaks appeared in P2, two causes 
are possible. The first possibility is that the LSTM model could describe only some partial features 
of the true objective function. The better separation of the two peaks in Figure 2b implies that the 
training after 2nd screening had captured more features. The second possibility is that half of the 
screened peptides were initial peptides. Further investigations are needed on this problem. 

In the next step, we tried to figure out the score of aMD5, which was reported in the previous 
study6 but not used for training the LSTM model. On average, one in 330 random sequences had 

Figure 2. Classification probability distribution of Initial state (I) and 2nd screened state (P2) 
The horizontal axis represents the classification probability. The value smaller than 0.5 would be predicted as 
peptides from I, and larger than 0.5 would be predicted as peptides from P2. Actual peptides from I are shown 
in blue, and P2 in orange. Each distribution was trained by the 1st screening results (a) or the 2nd screening 
results (b). 
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higher score value than aMD5. This rarity was widely distributed from one in 10 to one in 100,000 
depending on the random initial values of the LSTM model. Meanwhile, the training accuracy as 
shown in Figure 2 was roughly the same for each random initial value. The possible reason for this 
situation is that the characteristics of the strong binding affinity did not clearly appear in the 2nd 
screening results. Then the LSTM model randomly filled the missing part of the information, where 
some of them gave the correct answer (or near the aMD5 answer) and some wrong. 

Based on the above results, we tested two strategies for candidate screening. Strategy 1 used the 
minimum score of 20 LSTM model ensemble that gave a high score on aMD5 from randomly trained 
LSTMs. This strategy increased the rarity of aMD5 to one in 14,000,000. The disadvantage of this 
strategy is that it cannot be used without experimental results. In strategy 2, the average value of the 
scores from randomly trained 50 LSTMs without any constraint conditions was used as the overall 
score. 

Candidate searching was done in two steps. First, we generated and evaluated a billion of random 
peptides, and recorded top 100,000 sequences. Then, we generated the mutants for the second step. 
We substituted one amino acid for another while rotating the sequences. This method created 3,054 
mutants from each parent. The second step of screening was done by generating all possible mutants 
from top 1,000 peptides in the previous generation (using random search results at first generation), 
and the scores were evaluated and recorded if mutants were newly suggested peptides. Then, new 
top 1,000 peptides are used again as new parents, and this process were repeated until no more parents 
were found. The top five peptides are shown in Table 1. 

For the experimental evaluation, we also tried to search other families of peptides from the 
champion peptides. We estimated the score barrier when substitute one amino acid for another to find 
other families. Because it was difficult to set up a clear family boundary, we used a provisional value 
to suggest peptides for evaluation in Table 2. 

Evaluation of designed peptides 
To test whether the designed peptides could bind to Met, the peptide-mRNA/cDNA fusion for 

each sequence was prepared in a similar manner as in the screening, and the amount of binding 
fraction on the beads bearing Met was quantified. While aMD5 showed a binding fraction of 90%, 
the designed peptides showed <1%, suggesting that their affinity was lower than that of aMD5. 

Table 2. Peptides for experimental verification suggested by LSTM models 

 Strategy 1 Strategy 2 
Sequence Score Sequence Score 

1 WYYYGAKWQRLLP 0.988106 YYYYYAKQRWLLP 0.985776 
2 YYYYAKWGKLLLP 0.983291 YYYYLKCKLRLLL 0.958273 
3 FYYPYCFELRLLL 0.947954 LLKLKWCWLKLLE 0.927284 
4   LERLRWCWLKLAL 0.870536 

 

Table 1. Top rank of peptides by LSTM models trained by different two strategies 

Rank Strategy 1 Strategy 2 
Sequence Score Sequence Score 

1st WYYYGAKWQRLLP 0.988106 YYYYYAKQRWLLP 0.985776 
2nd WYYYGAKWRQLLP 0.987411 YYYYYAKQRWLLA 0.985612 
3rd YYYYANFKQLYLP 0.987244 YYYYYARQRWLLP 0.985422 
4th WYYYSAKWQKLLP 0.987196 YYYYYAKQRFLLP 0.985402 
5th YYYYANFKLQYLP 0.987173 YYYYYAQKRWLLP 0.985400 
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Conclusion 
We performed machine learning using the data from screening of macrocyclic peptides and 

constructed models for prediction of the binding affinity from peptide sequences. Although the model 
seemed to have succeeded in learning the screening results, attempts at design of sequences with high 
affinity suggested the necessity of improved prediction accuracy. We expect that detailed analysis of 
the screening results and improved quality and quantity of data would solve this problem. For 
example, investigating the cause of the change in the probability distribution observed in Figure 2, 
increasing the number of screening cycles to reduce the noise, and scaling up the sequencing might 
be effective. 
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