## Report on MERIT long-term Overseas Dispatch

Department of Physics, School of Science Ogata group, 2<sup>nd</sup> year of PhD. student Kunio Tokushuku

I have stayed in Lausanne from January 7th to April 6th, 2018 by using MERIT long-term overseas dispatch program. Lausanne is an old city in the Switzerland, which is situated on the shores of Lake Léman. Due to a difference in elevation in the city, we can enjoy a dramatic panorama over the lake and the Alps on sunny days.

During stay, I have collaborated with Prof. Mila and Dr. Danu at Swiss Federal Institute of



Pic.1 Lausanne Cathedral: Symbol of the city

Technology in Lausanne (EPFL). We have studied frustrated 1-dimentional spin chain by Exact Diagonalization method. Since the study theme is different from my research in Japan, it was great opportunity to acquire a new insight in this research region. Thanks to kind guiding of collaborators, I got some results and new techniques (following page).

In addition to my research life, I enjoyed life of Switzerland as well. Members of laboratory were so kind to me; we went snow hiking, bouldering, gathering, music concert and so on. Especially, Easter Holiday (It was just my last holiday in Switzerland!), which we spent at a cottage together was so memorable. We enjoyed community life for four days at picturesque village (Pic.3).



Pic.2 Snow hiking with members of laboratory



Pic.3 View from the cottage

## Research theme

Parity of site dependence of level crossing on frustrated quantum spin system Abstract

Inspired by the experiments [1,2], we seek the experimental set-up which shows non-trivial quantum phenomena. In this work, we focus on finite size of 1-dimentional  $J_1$ - $J_2$  XXZ model which can be realized in the experiment of Co atoms on Cu<sub>2</sub>N/Cu(100)[1].

In this model, when there are frustration such that  $J_1$  is ferromagnetic and  $J_2$  is anti-ferromagnetic, there is unusual quantum phase. The most important feature is completely difference of level crossing and magnetization depending on parity of the number of site *N*. While, in *N* odd case, there are level crossing and magnetization jump like previous research [2], in *N* even case, there are not. We argue this points in terms of parity. We also discuss the feasibility of our model in experiment.

## **Reference**

[1] A. Spinelli, et al., Nat. Commun. 6, 10046 (2015).

[2] R. Toskovic, et al., Nat. Phys. 12, 656 (2016).

## Acknowledge

I thank MERIT and Prof. Ogata for organizing this stay. I also thank Prof. Mila and Dr. Danu for fruitful discussion and guiding me. Finally, I appreciate all member of Prof Mila laboratory for giving me a wonderful time in Switzerland.



Pic.4 Photo with collaborators: Dr. Danu (left), Author (center), Prof. Mila (right)